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Abstract

We provide a new method to analyze discrete choice models with state de-

pendence and individual-by-product fixed effects, and use it to analyze consumer

choices in a policy-relevant environment (a subsidized health insurance exchange).

Moment inequalities are used to infer state dependence from consumers’ switch-

ing choices in response to changes in product attributes. We infer much smaller

switching costs on the health insurance exchange than is inferred from standard

logit and/or random effects methods. A counterfactual policy evaluation illus-

trates that the policy implications of this difference can be substantive.

Keywords: health insurance market, state dependence, fixed effects, discrete choice,

partial identification

∗Pakes: Harvard University, apakes@fas.harvard.edu. Porter: University of Wisconsin-Madison, jr-
porter@ssc.wisc.edu. Shepard: Harvard University, mark shepard@hks.harvard.edu. Calder-Wang: Uni-
versity of Pennsylvania, sophiecw@wharton.upenn.edu. We thank Hanbin Yang for truly outstanding re-
search assistance, and Liran Einav, Jeremy Fox, Ben Handel, and Amanda Starc for comments. We also
acknowledge the Massachusetts Health Connector (and especially Marissa Woltmann) for help in provid-
ing and interpreting the data. We gratefully acknowledge data funding from Harvard’s Lab for Economic
Applications and Policy.

1



1 Introduction

Since Heckman (1978, 1981), distinguishing the impacts of unobserved heterogeneity from

those of state dependence has been a central issue in empirical work in economics, as the

distinction has implications for the interpretation and policy implications of many observed

phenomena. The analysis of unemployment durations seeks to separate out the causal effects

of being unemployed on future employment from unobserved heterogeneity in worker employ-

ability (see Kroft et al. (2013) and the articles cited therein). Both the marketing and I.O.

literatures face the problem of distinguishing switching costs from unobserved preferences

in explaining the constancy of individual purchasing patterns over time (see the review by

Keane (1997)). Network models often need to distinguish between common preferences and

the causal effects of the network (see for example, Conley and Udry (2010)). A similar prob-

lem arises in distinguishing the effects of moral hazard from adverse selection in evaluating

policies designed to monitor behavior in insurance markets (Abbring et al., 2003).

This paper develops a new method to estimate state dependence in a choice model that

allows for flexible unobserved heterogeneity through individual-by-product fixed effects. We

apply the method to the issue of understanding persistence in health insurance plan choices,

an issue which has led to considerable policy debate. Our method is nonparametric, but

we also develop a parametric analogue. We then compare the empirical results from the

nonparametric model to both the parametric model that allows for individual-by-product

fixed effects, and to a more familiar set of parametric models that do not. In both models that

allow for fixed effects we find an upper bound to switching costs that is considerably lower

than the estimates found in the literature. A counterfactual indicates that the difference is

likely to have substantial implications for the analysis of price effects.

The question of whether state dependence or unobserved heterogeneity underlies low

price responsiveness in health insurance choice is economically important and policy-relevant.

Governments set rules for market-based health insurance programs in the Affordable Care

Act exchanges, Medicare Part D, and Medicaid managed care that cover more than 75 million

people and cost over $700 billion in public spending per annum in the U.S. alone. Recent

applied work suggests that choice persistence driven by state dependence (or “switching
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costs”) may lead to larger insurance markups (Ho, Hogan, and Scott Morton, 2017), may

interact with problems created by adverse selection (Handel, 2013; Polyakova, 2016), and

may lead to invest-then-harvest pricing dynamics (Ericson, 2014).1 It is unsurprising, then,

that regulators often seek to encourage switching through reminders and outreach, with the

idea that active shopping will improve market outcomes. However, as noted by Dafny, Ho,

and Varela (2013), if choice persistence is primarily due to preference heterogeneity, those

policies may be misguided; it may be better to simply encourage product variety.2

We offer a new way of distinguishing between state dependence and heterogeneity. Prior

work has focused on one of two general approaches. The first, followed by most applied

work, estimates a fully parametric utility model that includes a cost of switching from an

individual’s lagged choice (their “state”). As Heckman (1981) emphasized, this approach

relies on finding “initial conditions” in which individuals make choices without any state

dependence (e.g., a first-time product choice), or with the unlikely proposition that their

state is unrelated to their preferences. Valid initial conditions are not always available,

and even when they are, identification of switching costs comes partly from the parametric

specification of utility.

The other approach, following the seminal work of Honoré and Kyriazidou (2000), does

not require initial conditions but instead focuses on subsets of the data where the role of

(very flexible) unobserved preferences, captured by individual-by-product fixed effects, can

be differenced out. This provides an attractive nonparametric alternative, but in practice,

it requires finding cases where all product characteristics (including prices) are constant (or

nearly so) over time. In many settings—including the health insurance context we study—

such conditions are rare enough that the conditioning set becomes exceedingly small.

Our key contribution is to show how to use partial identification in a model with flexible

fixed effects to identify state dependence from patterns of switching choices in response to

changes in prices (or other product characteristics). In doing so, we develop new economic

1A related literature studies the mechanisms behind state dependence in health insurance choices, distin-
guishing factors like search costs, rational inattention, and true switching hassles (Heiss et al., 2021; Abaluck
and Adams-Prassl, 2021; Brown and Jeon, 2020; Brot-Goldberg et al., 2021).

2Similar questions about the role and implications of heterogeneity vs. state dependence have been
studied in a variety of applied settings. Examples include consumer products markets (Keane, 1997; Dubé
et al., 2009, 2010; Bronnenberg et al., 2012), residential electricity markets (Hortaçsu et al., 2017), auto
insurance (Honka, 2014), and paid television services (Shcherbakov, 2016).
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intuition about how certain patterns of switching choices around price changes can distin-

guish state dependence from heterogeneity. We show how to use this intuition to guide the

selection of moment inequalities based on economic theory, addressing the practical problem

of “too many inequalities” that often poses a challenge for moment inequality methods.

Our econometric model is a semiparametric dynamic discrete choice model that allows for

flexible unobserved preferences via individual-by-product fixed effects. Here we present the

simple case where price is the only observed product characteristic coefficient of interest—

relegating the impact of other observables to the fixed effects—but the method can be ex-

tended to allow the targeted coefficients to be a vector. Consumer i at time t faces a choice set

Dt where #Dt = Dt. Given price pd,i,t for choice d ∈ Dt and last period’s choice yi,t−1 ∈ Dt−1,

the utility associated with choice d at time t is

Ud,i,t =
(
− pd,i,t − κ0 · 1{yi,t−1 6= d}

)
βi + λd,i + εd,i,t (1.1)

with βi > 0. The choice in period t is yi,t = maxd∈Dt Ud,i,t.

Here κ0 represents the price-equivalent cost of switching, βi allows the importance of

price to vary by individual, λd,i denotes individual (additive) product preferences, and εd,i,t

captures the remaining unobserved variation in random utility. This specification lets us

estimate the importance of switching costs relative to price, allowing both for individual-

specific price coefficients and a flexible tradeoff between these variables and other additively

separable preferences. No restrictions are placed on the joint distribution of the fixed ef-

fects and the prices or any other observed individual characteristics, including the initial

conditions. Different assumptions on the distribution of {εd,i,t}d∈Dt,1≤t≤T are explained and

explored.

The parameter κ0 is our main empirical focus, as it captures the importance state depen-

dence. In general, κ0 is only partially identified (Honoré and Tamer, 2006). We construct

moment inequalities that are true regardless of unobserved preferences (λd,i, βi) that identify

bounds on κ0. These moment inequalities are a direct result of revealed preference, and the

bounds they generate require only relatively weak restrictions on εd,i,t.

The key intuition, formalized in the paper, can be seen in the following example. Suppose
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that we observe a product d whose relative price falls from t−2 to t−1 and then rises again

in t.3 If, for consumers in a given initial state yt−2 ( 6= d), we observe that their probability

of switching to d when its price improves in t − 1 exceeds their probability of staying with

d when its price worsens in t, then we can infer that switching costs must not be too large.

In other words, we infer an upper bound on κ0 from cases where price changes lead to a

sufficient amount of switching towards plans whose price falls. This bound holds regardless

of unobserved preferences, our (λd,i, βi), from the fact that these tastes are the same when

the two choices are made at times t − 1 and t. The tightness of the upper bound depends

on how little prices need to change to generate a large degree of switching to and from d.

Similarly, we can infer a lower bound on switching costs from cases where consumers stay

with a product when its attributes get worse (e.g., its price rises) more frequently than they

switch to it when its attributes improve.

Given the model in equation (1.1), the bounds on κ0 can be used to either explore the

factors associated with the ({λd,i}d,i, {βi}i) and/or, as we do below, to assess the impact

of counterfactual prices when we control for the fixed effects. Alternatively, and equally

important, we provide a simple test for the presence of state dependence and a way to

control for its impact on the coefficients of observed covariates. A more detailed model may

be needed to uncover the mechanism that generated it.4

Related Econometric Literature. We build on two strands of the literature: papers

that analyze discrete choice models with fixed effects and papers that add state dependence

3More generally there could be more than one observed characteristic of interest whose value changes
over time for a given individual, and/or for which the form of its interactions with either βi or λi can be
specified a priori, in which case the target parameter would be a vector. In our empirical work we condition
on cells with common observed characteristics, so using a single target parameter seems appropriate (and
also simplifies the exposition).

4Relatedly, the moment inequalities we derive are unlikely to provide a sharp characterization of the
identifying information on κ0, but we exploit variation in choices in a straightforward way that should
appeal to practitioners. One could analyze the distinction between the identified set defined by our moment
inequalities and the sharp set in special cases where the sharp set is known as in the dynamic binary
response model with discrete covariates (Khan et al., 2020). However, as we demonstrate below, empirical
implementation would have to face the challenge of maintaining power with an exceptionally large number
of slack inequalities. Also our focus is on κ0, rather than on the quantiles or averages of utilities, which is
the focus of Chernozhukov et al. (2013), or the treatment effect parameters defined in Torgovitsky (2019).
This is largely due to our interest in evaluating counterfactuals, including equilibrium responses to changes
in the environment.
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to that problem. The literature on discrete choice with fixed effects provides an analogue

of “within” estimation in panel data models with continuous dependent variables where

the between/within distinction has been a focus of empirical analysis. Chamberlain (1980)

shows how an assumption of “logit” disturbances generates a consistent conditional likelihood

estimator for that problem. Manski’s (1987) maximum score estimator provides consistent

estimates for the binary choice problem with fixed effects and a nonparametric disturbance

distribution. Papers by Shi, Shum, and Song (2018) and Pakes and Porter (2016), which we

return to below, use an assumption of stationarity of the marginal distribution of disturbances

over time to obtain their estimators for multinomial problems. Also related is work by Tebaldi

et al. (2019) that develops a method to estimate static demand for health insurance in a

model with flexible, nonparametric preference heterogeneity.

As noted, Honoré and Kyriazidou (2000) allow for state dependence and fixed effects

and generate point identification by conditioning on observations that are matched across

periods. A recent paper by Honoré and Weidner (2020) considers a binary logit model

with state dependence that does not require matching (or situations with constant product

characteristics over time).5 Honoré and Tamer (2006) examine identified sets from a related

model, and Khan et al. (forthcoming) investigate different assumptions on disturbances using

both conditioning and matching. Torgovitsky (2019) considers state dependence through a

nonparametric dynamic binary potential outcome framework and provides an approach to

computing sharp bounds on state dependent treatment effects under various assumptions.

Empirical Results. Our empirical work analyzes health insurance choices in the Com-

monwealth Care (“CommCare”) program in Massachusetts, enacted as part of the state’s

“RomneyCare” reform. The program provided subsidized health insurance for citizens with

incomes below 300% of the federal poverty level via an insurance exchange that let consumers

choose among competing private plans. The program started in 2007 and grew steadily dur-

ing 2007 and 2008. We begin our analysis in 2009 at the time of the first large price change

(conditioning on choices prior to this) and use plan switching behavior from 2009 to 2013

5Honoré and Weidner (2020) use a “functional differencing” method (Bonhomme, 2012) that allows them
to construct moment functions across possible outcomes that exactly difference out choice probabilities from
the logit model, generating a mean-zero GMM moment and point identification of the state dependence
parameter.
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(just before the transition to the Affordable Care Act) for our empirical estimates. Impor-

tantly, the program features several large price changes that provide identifying variation for

our method.

We use individual-level panel data on insurance choices to estimate switching costs in

our model using both our semiparametric and parametric moment inequality approaches.

We find lower bounds on switching costs (κ0) ranging from $20 (from the semiparametric)

to $32 (from the parametric analysis) per month and upper bounds of $56-57 per month.

The closeness of the parametric upper bound ($56) with that found from the semiparametric

analysis ($57) adds confidence in our estimates of that parameter. These switching costs are

meaningful relative to average (subsidized) consumer premiums in the market, which vary

from $48 to $62 per month during this period.

The upper bound on switching costs is a focus of our analysis. This is because we find

that the upper bounds from our method are much smaller than the point estimates from

methods used in the prior applied literature, and the difference is large enough to have a

substantial impact on our counterfactual analysis.

To show this we use our data to estimate logit choice models that allow for state depen-

dence but do not allow for individual-by-product fixed effects, instead relying on alternative

approaches to capture unobserved heterogeneity. These choice models include plan fixed

effects interacted with: (i) increasingly detailed consumer attributes (up to 252 interac-

tions between consumer and product attributes), (ii) individual random effects assumed to

be orthogonal to an initial lagged choice, and (iii) individual random effects starting from

a plausible initial condition (a consumer’s first choice in the market), with the likelihood

function simulated over their full sequence of subsequent choices.

Across these comparison models, we estimate much higher switching costs of $78 to $114

per month — values that are 37-100 percent above the upper bound from our fixed effects

method. These higher estimates are consistent with prior work on the CommCare data (see

Shepard (2022), who finds κ0 ≈ $100) and with similarly high estimates in other health

insurance settings (e.g., Handel, 2013; Polyakova, 2016). The much lower switching costs

from our method (with flexible fixed effects) suggests a large role for unobserved preferences

that is not easily captured by observed consumer attributes or random effects in the health
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insurance context,6 implying less inertia and considerably larger price-responsiveness than

obtained from prior procedures.

We conclude with an examination of the implications of the difference between the esti-

mates that do and do not allow for fixed effects. The largest plan in our data experimented

from 2011-12 with increasing its average premium from $58.4 to $91.5. After experiencing

sharp losses in market share, it reduced its premium to $41.5 in 2013. Using the comparison

models to compare the implications of the estimates of κ that do and do not allow for fixed

effects, we consider a counterfactual where instead the plan priced at the average of the 2012

and 2013 prices in both years. The difference in the predictions from using the different κ

estimates is dramatic. The predicted share decline in 2012 is four to five times larger when

we use our estimates, and the predictions for the two-year change actually differed in sign.

Outline of Paper. We begin with a revealed preference inequality that provides the rela-

tionship between price (or attribute) changes and switching behavior that underlies all of our

results. Next we consider the implications of a method that makes only weak assumptions

on the disturbance terms. These implications are then used to investigate the role of state

dependence in the choice of plans made by the participants in CommCare. Next we consider

the implications of revealed preference when one is willing to make parametric assumptions

on the disturbances, first without and then with the additional structure of extreme value dis-

turbances. Before going to the parametric revealed preference empirical results, we present

the results from the parametric comparison models that do not allow for fixed effects. These

are then compared to the revealed preference bounds that allow for fixed effects and the

implications of the differences between them are explored in the counterfactual analysis. We

conclude with a brief summary. All proofs are provided in Appendix C.

Notation. Let εi,t ≡ [ε1,i,t, . . . εD,i,t], εi ≡ [εi,1, . . . εi,T ], λi ≡ [λ1,i, . . . , λD,i], pi,t ≡ [p1,i,t, . . . pD,i,t],

and pi ≡ [pi,1, . . . , pi,T ]. While pi denotes price in our application, it could include any time-

6One plausible reason is the key role of varying hospital and physician networks across plans, combined
with individual-specific preferences for accessing certain doctors/hospitals with whom patients have an exist-
ing relationship (see Shepard, 2022; Tilipman, 2022). Another plausible explanation is varying perceptions
of insurer brand quality (Starc, 2014), perhaps based on local advertising or recommendations of family and
friends.
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varying observed covariates more generally.

2 Price Changes that Induce Switching.

Our approach uses revealed preference to relate switching behavior directly to the price

changes that induced it. Let c, d ∈ Dt ∩ Ds denote two distinct choices. If an agent chose

d instead of c at time t, then Ud,i,t − Uc,i,t ≥ 0. Likewise, if they chose c over d in period

s, then Uc,i,s − Ud,i,s ≥ 0. Summing these inequalities generates an expression known to be

non-negative that does not depend on λi, and dividing by βi > 0 does not change the sign of

the inequality. From this starting point, we consider different methods of generating either

an upper or lower bound on κ0 — depending on the observed pattern of switching — that is

a function of (observed) price changes and (unobserved) utility error changes. The different

methods we employ are generated by first nonparametric, and then parametric, assumptions

on the error distribution.

Formally, assume agent i chooses c at time s and d at time t, where s < t and {d, c} ∈

Dt ∩ Ds. Then the model in equation (1.1) implies Ud,i,t − Uc,i,t ≥ 0, or

(
− [pd,i,t − pc,i,t]− [1{yi,t−1 6= d} − 1{yi,t−1 6= c}]κ

)
βi + [λd,i − λc,i] + [εd,i,t − εc,i,t] ≥ 0

and since Uc,i,s − Ud,i,s ≥ 0,

(
− [pc,i,s − pd,i,s]− [1{yi,s−1 6= c} − 1{yi,s−1 6= d}]κ

)
βi + [λc,i − λd,i] + [εc,i,s − εd,i,s] ≥ 0.

Since adding these two inequalities together cancels the λd,i − λc,i terms, it generates an

inequality that does not depend on these unobserved preferences. If we then divide by

βi > 0, and define ∆∆xd,ci,t,s ≡ [(xd,i,t − xc,i,t)− (xd,i,s − xc,i,s)] for any variable x, we obtain

−∆∆pd,ci,t,s − sw
d,c
i,t,s · κ+ ∆∆εd,ci,t,s ≥ 0, where (2.1)

swd,ci,t,s = swd,c(yi,t−1, yi,s−1) ≡ (1{yi,t−1 6= d}−1{yi,t−1 6= c})−(1{yi,s−1 6= d}−1{yi,s−1 6= c})

and we have abused notation slightly by not distinguishing ∆∆εd,ci,t,s from β−1
i ∆∆εd,ci,t,s. This
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because differences in βi do not impact our nonparametric identification results, so for sim-

plicity we take βi ≡ 1 in the nonparametric section. However, when we move to parametric

models we will reintroduce βi, as the differences in βi do impact the parametric results.

Inequality (2.1) follows directly from Samuelson’s revealed preference inequalities once

we allow for fixed effects, state dependence and disturbances (Samuelson, 1938). It shows

that the extent of switching induced by price changes depends on κ0 and the distribution of

the disturbances in the utility function (i.e. ∆∆εd,ci,t,s). Across all our methods, we assume

that

Assumption 2.1.

εi,t | pi, yi,t−1, yi,t−2, . . . , yi,0, βi, λi ∼ εi,t | βi, λi �

which implies that all serial dependence in choices not associated with prices or the fixed

effects is modeled through the state dependence parameters.

We then consider three assumptions on the contemporaneous distribution of εi,t. In the

first two we allow that distribution to be nonparametric. First we consider the direct (or

“positive”) implication of equation (2.1) when all that is assumed is that the coniditional

median of ∆∆εd,ci,t,s = 0. This allows the distribution of εi,t, to differ over time. Next we make

the stationarity assumption that εi,t|λi, βi ∼ εi,1|λi, βi. This does not require the median

zero assumption but does assume that the conditional distribution of εi,t does not change

over time. Formally, this approach does not difference out fixed effects, but it achieves the

same goal by considering only the “within” variation in choices across time as prices and

lagged choices vary while fixed effects and the distribution of disturbances stay constant. We

show that it can be informative about κ when the assumption that the conditional median

of ∆∆εd,ci,t,s = 0 is not.

Finally we consider the case where εi,t has a parametric distribution, that is εi,t ∼ F (·|θ).

For this case we begin with inequalities that are available regardless of the precise form of

that distribution, and then add inequalities that require F (·|θ) to be a logistic distribution.
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3 Nonparametric Approaches

In this section we present two nonparametric approaches to inferring bounds on switching

costs and use them to explore the extent of state dependence in the Commcare data. The

assumptions underlying inequality (2.1) are used throughout. This inequality implies that

if agent i chooses d at time t and c at time s, where s < t, and d, c ∈ Dt ∩ Ds, then

∆∆εd,ci,t,s ≥ ∆∆pd,ci,t,s + κ · swd,ci,t,s. Each nonparametric approach leads to an identification

finding that the probability of choices c and d at times s and t can be informative about κ0.

3.1 Direct Implications of Revealed Preference.

The revealed preference inequality (2.1), together with serial independence (Assumption 2.1),

imply that if agent i chooses d at time t and c at time s, where s < t, and d, c ∈ Dt ∩ Ds,

then ∆∆εd,ci,t,s ≥ ∆∆pd,ci,t,s + κ · swd,ci,t,s. Denoting the conditional distribution of ∆∆εd,ci,t,s (given

pi, yi,s−1) by Fd,ct,s (·), then

Pr(yi,t = d, yi,s = c | pi, yi,s−1) ≤ 1−Fd,ct,s (∆∆pd,ci,t,s + κ0 · swd,ci,t,s). (3.1)

An estimate of the left hand side of this inequality can be obtained from the data and does

not depend on κ. The right hand side does depend on κ0, but how that can be used to

reject values of κ 6= κ0 depends on what is known about the conditional distribution Fd,ct,s .

A nonparametric approach adopts the following conditional median assumption7

Assumption 3.1.

median[∆∆εd,ci,t,s|pi, yi,s−1] = 0

First consider the implications of Pr(yi,t = d, yi,s = c|pi, yi,s−1) < 0.5. Notice that

∆∆pd,ci,t,s + κ · swd,ci,t,s < 0 implies 1 − Fd,ct,s (∆∆pd,ci,t,s + κ0sw
d,c
i,t,s) > 0.5 which automatically

satisfies equation (3.1). If ∆∆pd,ci,t,s + κ0sw
d,c
i,t,s = x > 0 equation (3.1) will imply that

7The median zero assumption does not require stationarity. It suffices to assume εd,i,t− εc,i,t and εd,i,s−
εc,i,s are symmetrically distributed about zero. For example, the assumption that εd,i,t − εc,i,t and εd,i,s −
εc,i,s are symmetrically distributed about zero would follow from an assumption of exchangeability of the
disturbances across choices (Manski, 1975; Fox, 2007; Yan, 2013)
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Fd,ct,s (x) > (1 − Pr(yi,t = d, yi,s = c|pi, yi,s−1)), but since the only restriction on Fd,ct,s (x)

is that it be larger than a half, we can always find an Fd,ct,s (·) that satisfies this condition.

So if Pr(yi,t = d, yi,s = c|pi, yi,s−1) < 0.5, which is always the case for the estimated

probabilities in our data, Assumption 3.1 cannot rule out any values of κ. If Pr(yi,t =

d, yi,s = c|pi, yi,s−1) > 0.5, Assumption 3.1 will imply that ∆∆pd,ci,t,s + κ0sw
d,c
i,t,s < 0 producing

an upper (lower) bound when swd,ci,t,s > 0 (< 0). Though this case is not relevant for our

data, it may be for others, so we provide a more formal treatment of it in the Appendix.

3.2 Contrapositive Implications of Revealed Preference.

This subsection adds Assumption 3.2 to Assumption 2.1.

Assumption 3.2. For any t, the disturbance εi,t is conditionally stationary over time, i.e.

εi,t |λi ∼ εi,1 |λi. �

Assumption 3.2 is common in dynamic panel settings. It includes strict exogeneity of

the time-varying covariates pi while placing no restrictions on the correlation between λi

and pi. Nor does it impose any restriction on the distribution of εd,i,t across choices d, so

εd,i,t can be freely correlated with εc,i,t, ∀(c, d) ∈ D2. We also assume the εi are identically

distributed across individuals i, though the identification results could be re-written to allow

for non-identical distributions.

Differences in the structural part of utility. Consider any two periods t and s, with

t > s, and define the structural part of the utility for choice d in period t as

SUd,i,t(yi,t−1, pi;λi, κ) ≡ −pi,d,t − κ · 1{yi,t−1 6= d}+ λd,i = Ud,i,t − εd,i,t. (3.2)

For a fixed κ, order choices by the difference SUd,i,t(yi,t−1, pi;λi, κ)−SUd,i,s(yi,s−1, pi;λi, κ).

Comparing preferences for a given choice in different periods differences out the {λi}.8 So if

8Were we to reinstate the βi the difference would also produce an ordering which does not depend on
those parameters, which is why we ignore the βi in the non-parametric analysis.
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d1(·) is the choice with the largest structural utility difference between the periods

d1(yi,t−1, yi,s−1, pi,t, pi,s;κ) ≡ max
d∈D

[SUd,i,t(yi,t−1, pi;λi, κ)− SUd,i,s(yi,s−1, pi;λi, κ), ] (3.3)

while for j = 2, . . . D, the choice with the jth largest difference is

dj(yi,t−1, yi,s−1, pi,t, pi,s;κ) ≡ max
d/∈{d1,...dj−1}

[SUd,i,t(yi,t−1, pi;λi, κ)− SUd,i,s(yi,s−1, pi;λi, κ)] .

(3.4)

In words, d1(·) is the choice whose structural component of random utility improves most

between periods s and t (conditional on lagged choices), d2(·) improves the next most, and

so on. Note that for any given value of κ, the ordering (d1(·), d2(·), . . .) depends only on the

differences in prices and switching costs over the two periods.

Since εi,t and εi,s have identical distributions the relative magnitude of the conditional

probabilities for yi,t = d1 and yi,s = d1 depends only on the difference in the structural part

of their utilities. So when κ = κ0 equation (3.3) ensures that the conditional probability of

observing d1(·;κ0) in period t is greater than in period s. More generally, we have9

Lemma 3.3. Suppose Assumption 3.2 holds. Assume t > s, and D0 ⊂ D. If

min
d∈D0

[SUd,i,t(yi,t−1, pi;λi, κ0)− SUd,i,s(yi,s−1, pi;λi, κ0)]

≥ max
c/∈D0

[SUc,i,t(yi,t−1, pi;λi, κ0)− SUc,i,s(yi,s−1, pi;λi, κ0)] ,

then

Pr(yi,t ∈ D0|pi, yi,t−1, λi) ≥ Pr(yi,s ∈ D0|pi, yi,s−1, λi). �

Let d0
j denote dj(yi,t−1, yi,s−1, pi,t, pi,s;κ0). If the d0

j are distinct the choice sets (or the D0)

that satisfy the supposition of this lemma are D0 = {d0
1} , {d0

1, d
0
2}, . . ., {d0

1, . . . , d
0
D−1}.

The lemma states that if the structural utility for individual i (including any switching

costs) for all d ∈ D0 improves by at least as much as all options c /∈ D0 between periods s

and t, then individual i will be more likely to choose an option d ∈ D0 at time t than at

time s regardless of its value for λi.

9An analogous finding in the static discrete panel model is found in Pakes and Porter (2016).
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Allowing for state dependence. The conditional probabilities in the conclusion of

Lemma 3.3 cannot be estimated directly due to the presence of the unobserved values of

λi in the conditioning set. Without state dependence, both sides of the inequality could be

integrated with respect to the conditional distribution of λi given prices to yield a condi-

tional probability inequality based only on observables. However, with state dependence,

this simple way of integrating out λi from the inequality is not applicable, since the condi-

tional distribution of λi given prices and yi,t−1 cannot be assumed the same as conditional

distribution of λi given prices and yi,s−1. So to identify κ0 we need more than the Lemma.

To see through how we proceed consider the special case where s = t − 1, D0 = d0
1 (a

single choice), and yi,t−1 = d0
1. Applying Assumption 2.1 and Lemma 3.3 we obtain

Pr(yi,t = d0
1|pi, yi,t−1 = d0

1, yi,t−2, λi) = Pr(yi,t = d0
1|pi, yi,t−1 = d0

1, λi)

≥ Pr(yi,t−1 = d0
1|pi, yi,t−2, λi).

As noted above, we cannot use this inequality directly because we do not observe λi. So we

multiply both sides by Pr(yi,t−1 = d0
1|pi, yi,t−2, λi) and take expectations over λi (given prices

and yi,t−2). Then,

Pr(yi,t = d0
1, yi,t−1 = d0

1|pi, yi,t−2)≡ Eλi [Pr(yi,t = d0
1, yi,t−1 = d0

1|pi, yi,t−2, λi)|pi, yi,t−2]

≥ Eλi [
(
Pr(yi,t−1 = d0

1|pi, yi,t−2, λi)
)2 |pi, yi,t−2]

≥
[
Eλi

(
Pr(yi,t−1 = d0

1|pi, yi,t−2, λi)
)]2

≡
(
Pr(yi,t−1 = d0

1|pi, yi,t−2)
)2
, (3.5)

where the first inequality follows from the lemma, and the second from Jensen’s inequality.

Finally divide both sides of (3.5) by Pr(yi,t−1 = d0
1|pi, yi,t−2) to obtain

Pr(yi,t = d0
1 | yi,t−1 = d0

1, pi, yi,t−2) ≥ Pr(yi,t−1 = d0
1 | pi, yi,t−2). (3.6)

Our assumptions imply inequality (3.6) holds when κ = κ0. We can calculate the difference

SUd1,i,t − SUd1,i,t−1 for any κ value. If (3.6) is violated when replacing d0
1 by d1(κ̃) then
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κ̃ 6= κ0. Moreover, if yi,t−2 6= d1(κ̃), then κ̃ ≥ κ0. I.e. if a significant number of people switch

out of d1, κ0 cannot be too large.

Note that the slackness in (3.6) is due to the fact that it ignores the variance in Pr(yi,t−1 =

d0
1|pi, yi,t−2, λi) conditional only on (pi, yi,t−2). This conditional variance, in turn, depends

on the variance of the λi. The λi are explained by both the observable and the unobservable

determinants of utility, and the richer the set of observable characteristics that the analyst

can condition on, the lower the conditional variance of the λi in the data, and the more

powerful this inequality. This motivates our decision to form moments from cells with

common observable characteristics and yi,t−2 in the empirical analysis which follows.

The result in the theorem to follow extends the argument above in two ways. First we

broaden the argument to apply to choice probabilities of non-singleton sets. When s = t− 1

the extension just requires replacing d1
0 with D0 in equation (3.6), though then the inequality

is required to hold for each yi,t−1 ∈ D0. Second, when s < t − 1, yi,t−1 only enters the

inequality in the lemma through the conditional probability for yi,t. This implies that yi,t−1

can be allowed to take values different than yi,t provided the inequality holds for those values

of yi,t−1. When s < t− 1 the next condition defines the set of values yi,t−1 can take as D1.

Condition 3.4. Given t > s and choice sets D0, D1 ⊂ D, for all d′ ∈ D1,

min
d∈D0

[SUd,i,t(d
′, pi;λi, κ0)−SUd,i,s(yi,s−1, pi;λi, κ0)] ≥ max

c/∈D0

[SUc,i,t(d
′, pi;λi, κ0)−SUc,i,s(yi,s−1, pi;λi, κ0)].

This condition ensures that structural utility differences for the choices in D0 are larger

at time t for any value of the lagged dependent variable in D1 than at time s with a lagged

dependent value of yi,s−1.

Theorem 3.5. Suppose Assumption 3.2 holds.

(a) For s = t− 1, for any choice set D0 = D1 satisfying Condition 3.4,

Pr(yi,t ∈ D0 | pi, yi,t−1 ∈ D0, yi,t−2) ≥ Pr(yi,t−1 ∈ D0 | pi, yi,t−2)
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(b) For s < t− 1, for any choice sets D0 and D1 satisfying Condition 3.4,

Pr(yi,t ∈ D0 | pi, yi,t−1 ∈ D1, yi,s ∈ D0, yi,s−1) ≥ Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1).

Note that with s = t−1 the amount of inequalities Theorem 3.5(a) generates will depend

on κ0, with a minimum of D−1. If, as in Theorem 3.5(b), s < t−1 the fact that Condition 3.4

allows the set D1 of time t lagged values to be distinct from the set D0, it leads to potentially

even more inequalities, though again the actual number will depend on κ.

Selecting Moments. The fact that Theorem 3.5 generates many inequalities raises the

question of which inequalities to use. We provide more detail on the importance of, and

the procedure for, selecting moments in the next subsection where we can illuminate the

arguments by reference to our data. We conclude this section with an explanation of a

moment selection procedure for the simple case illustrated in inequality (3.6).

As in equation (2.1), the inequalities in Theorem 3.5 compare changes in switching costs

to changes in price. The economics inducing the consumer to make its choices underlies our

approach to choosing among inequalities. To reject the inequality in (3.6), and hence rule

out particular values of κ, we require the contrapositive

Pr(yi,t = d0
1 | yi,t−1 = d0

1, pi, yi,t−2) < Pr(yi,t−1 = d0
1 | pi, yi,t−2).

When might this occur? Recall that the distribution of εi,t in the two periods is the same,

so the answer lies in the economics underlying {SUd,i,t(yi,t−1, pi;λi, κ)−SUd,i,t−1(yi,t−2, pi;λi, κ)}d.

Moreover, we can condition on the initial choice and prices. So consider those who chose c in

t−2 and say there was a sharp increase pc,t−1−pd01,t−1. This should induce a fraction of them

to choose d0
1 in period t−1. Then, in period t, the relative price of d0

1 fell. This should induce

a significant fraction of them to shift back. The structural utility difference for choosing d0
1

in period t− 1 instead of c is −pd01,t−1 − κ0 + pc,t−1 + λi,d01 − λi,c, while the structural utility

difference for chosing c in period t instead of d is −pc,t − κ0 + pd01,t + λi,c − λi,d01 . If we add

the inequalities derived from these differences together and ignore the error terms, we get

the upper bound ∆∆p
d01,c
i,t,t−1 > 2κ0.
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More formally, with two choices Dt = Dt−1 = {c, d}, any κ value that satisfies 2κ ≥

(pd,t − pd,t−1)− (pc,t − pc,t−1) implies ∆∆SUd,c
i,t,t−1 ≥ 0. The theorem then implies

Pr(yi,t = d|yi,t−1 = d, p) ≥ Pr(yi,t−1 = d|yi,t−2 = c, p).

But if, in the data indicate that Pr(yi,t = d|yi,t−1 = d, p) < Pr(yi,t−1 = d|yi,t−2 = c, p);

i.e. some who went from d to c in t − 1 switch back in t, then we know 2κ0 < ∆pd,t,t−1 −

∆pc,t,t−1 (our ”contrapositive”).

3.3 Empirical Analysis: Massachusetts Health Insurance

We analyze health insurance plan choices made by enrollees in the Commonwealth Care

(“CommCare”) program in Massachusetts between 2009-2013. The program provided heav-

ily subsidized insurance to low-income adults (earning less than 300% of the Federal Poverty

Level) via a market featuring competing private health insurers. Five insurers participate in

the market during our data period, with each insurer (by rule) offering a single plan. Pro-

gram rules required each enrollee to make a separate choice; there was no family coverage,

and kids were covered in the separate Medicaid program. Individuals make plan choices at

two times: (1) when they join the market as a new enrollee, and (2) during an annual open

enrollment month when they are allowed to switch plans. Because our focus is on switching

costs, we study open enrollment choices, setting the prior choice (the state, yi,t−1) equal to

the individual’s plan in the month prior to open enrollment.10 For more detail on the data

and the CommCare program see Shepard (2022); Finkelstein, Hendren, and Shepard (2019);

McIntyre, Shepard, and Wagner (2021).

Forming Inequalities. We want to capture switching costs that are not induced by

changes in the individual’s choice environment, just by prices, and this requires the choice

set to be the same in the two periods we compare. We therefore remove comparisons for

10In a few circumstances, individuals are allowed to switch plans mid-year (e.g., if they move across
regions). Though we do not include these mid-year switching opportunities in our estimation, we do con-
dition on any switches that occur mid-year and update the lagged plan accordingly for the next switching
opportunity at open enrollment.
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individuals who changed regions (there are five in the data), or who faced different plan offer-

ings in the comparison periods, and use separate inequalities for each possible pair of income

groups in years t and s. We distinguish income groups because subsidies—and therefore

post-subsidy premiums—vary across five income groups (0-100% of poverty, and four 50% of

poverty groups from 100-300%). Lower-income groups both pay lower premiums overall and

have narrower premium differences across plans. This generates substantial price variation

that we can use to estimate κ0. Besides variation across income groups due to subsidies,

price variation was limited by regulations. Prices could vary by region in 2009-2010 but

not from 2011-on. No variation was allowed on other factors including age, gender, health

status, or any other characteristics.

Our model assumes that individual-level unobserved plan preferences (λd,i) are stable

over time. This is a sensible assumption given the nature of plans in the CommCare market.

Coverage is heavily regulated, with all cost sharing and covered medical services completely

standardized across insurers. The only flexible plan attributes are provider networks. These

were largely stable during our sample period with one major exception. Network Health

(one of our plans) dropped Partners Healthcare (the state’s largest medical system) from its

hospital network at the start of 2012. To account for this, we treat Network as two different

plans, one before and one after 2012, and apply the rules above with that understanding.

There were no other major changes in the networks of the plans during our study period.

However, one plan enters mid-sample (Celticare in 2010), and one plan (Fallon) exits several

areas in 2011.

To form the sample analogues of the inequalities in Theorem 3.5 we form cells with the

same observed characteristics and yi,s−1. The observed characteristics of a cell are denoted

by xi and are defined by the Cartesian product of: a) couple of years, b) region c) plan

availability and d) income group.11 So the λi represent differences in tastes among consumers

with the same xi and yi,s−1. Recall that though the ratio of price sensitivity to switching

cost is held constant, the price sensitivities themselves can vary in an arbitrary way and are

not identified, and so not included, in the nonparametric analysis.

11As noted the more finely we condition on observable variables, the smaller we expect the within variance
in the inequalities generated by the λi to be.
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Table 1 provides summary statistics on the data used, which is constructed from all the

cells defined above that have more than 20 members. We then sum the inequalities generated

by these cells across regions and plan availabilities to obtain our groups, and use these in

estimation. There are 242 groups defined by couple of years, income (the dimensions in which

price could differ in all sample years), and prior choice. This generates between 8,926 and

23,644 inequalities depending on the value of κ. These inequalities use 75,000 comparisons

of the choices made by the same individuals in different time periods.

Table 1: Summary Statistics for the Nonparametric Estimator

(s, t) Number of
Members

Number of
Groups

Number of
Members

Above
Cutoff

Number of
Groups
Above
Cutoff

Minimum
Number of

Moments

Maximum
Number of

Moments

(2009, 2010) 19,550 96 17,349 66 1,494 3,671
(2010, 2011) 13,989 96 13,181 76 3,181 8,748
(2012, 2013) 47,266 120 44,438 100 4,251 11,225
Total 80,805 312 74,968 242 8,926 23,644

Notes: The table shows summary statistics for the nonparametric estimator sample, by pair of years (s, t).

See the text for definitions of cells and groups used in the estimation. The table lists the number of

members and groups, both before and after applying the minimum cell-size cutoff of 20 members, and the

min and max number of moment inequalities (which depends on the value of κ being tested).

Economics and the Choice of Inequalities. There are benefits and costs to increasing

the number of groups used. As we increase the number of inequalities by increasing the

number of groups we (weakly) tighten the identified interval for κ. On the other hand

Theorem 3.5 generates thousands of inequalities and all but two of them will be slack.

The ability of test statistics to reject values of κ (weakly) decreases with the number of slack

moments, and testing procedure designed to mitigate this problem are likely to be challenged

by the number of inequalities in Table 1. So we turn to the economics underlying our choice

model to select inequalities.

Given our assumptions, the variables defining our groups are conditionally independent

of the disturbances in the comparison periods. This implies that we can use subsets of the
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groups in estimation without incurring a selection bias.12 Since the groups condition on time

and income, they determine the prices used when forming an inequality as well as the initial

choice, and as noted, the comparison of price changes to switching behavior underlies our

estimators.

Figure 1 provides the average prices paid by consumers (i.e. after subsidy) by year and

plan.13 It indicates that the prices of each of the plans do go both up and down over time.

Large price changes occurred between 2011 and 2012. This is the year that the market

regulators introduced a new rule that changed the nature of competition in the market.

Throughout, enrollees with incomes below the poverty line were fully subsidized. Prior to

2012 these enrollees were fully subsidized regardless of the plan they chose, but from 2012 on

these new enrollees were only allowed to choose between the two lowest-priced plans (though

below-poverty individuals already in the market prior to 2012 retained free choice among

plans). This created an auction-like dynamic in which the two lowest-bidding plans “won”

access to this large group, representing about half of new enrollees.

The different plans reacted differently to the change in rules. Boston Medical Center’s

plan (BMC), the plan with the largest share, increased its price sharply in 2012, essentially

ceding the market for full-subsidy new enrollees to the other plans, but then lowered its price

by an even greater amount in 2013. This generated the two largest price changes in Figure 1.

As noted there were no major changes in BMC’s network or other quality attributes over

this period. Instead the change in 2012 appears to reflect BMC’s strategic response to the

new competitive rule; BMC chose to raise its price in 2012 and earn a larger margin on those

members who did not move. In contrast Network Health and CeltiCare bid low in 2012 and

won the auction. As a result of these choices, BMC lost almost half of its market share

during 2012, and then decided to reverse course in 2013 and undercut both its competitors.

This allowed it to rebuild its market share in 2013 leading into the important transition of

CommCare into an Affordable Care Act exchange in 2014.

Table 2 summarizes the path of enrollment between 2011 and 2013 for people enrolled

12This assumes that the plan-specific effects are constant over time; but regulation insured that all non-
price non-network plan characteristics, including cost sharing and covered medical services, were constant
over time, and we have controlled for the only notable change in networks; see Appendix A.

13Prices set in 2007 were locked in from 2007-08, which is why there are no separate points shown for 2008.
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Figure 1: Choices and Premiums
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in CommCare in 2011. The top panel indicates that about two thirds of those enrolled

in CommCare in 2011 had moved out of CommCare by 2013. This is a market with a

lot of “churn” (partly induced by movements in and out of low-income eligibility due to

employment changes). The bottom panel reports on switching behavior among subscribers

who stayed in CommCare between 2011 and 2013. The fraction who switch plans in 2012

is 14.5%; BMC, the plan with the largest price increase, loses 19% of its 2011 subscribers.

Though all prices changed in 2013, BMC is the only plan whose average price decreased. Of

the subscribers who left BMC in 2012, about 36% (= 6.8%/19%) switch back in 2013, while

only 4% (= 0.5%/12.3%) of those who switched out of other plans in 2012 switched back in

2013.

Two Sets of Results. We begin with the results that use all possible inequalities, as this

illustrates the power problems likely when using a number of inequalities as large as those

listed in Table 1. In our main results, which are presented next, we chose those groups which

are most likely to generate bounds.

For an upper bound we know we need two switches, so we look for groups subject to a
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Table 2: Statistics on Enrollment and Switching for 2011 Enrollees over 2011-2013

All 2011
Enrollees BMC All Other Plans

Number of Enrollees
Total Enrollees in 2011 111,226 36,235 74,991
    Leave Market before 2013 76,007 24,812 51,195
    Stay in Market 2011-13 35,219 11,423 23,796

Switching Rates (among stayers in market)
Switch Plans from 2011-2012 14.5% 19.0% 12.3%
Switch in 2012, Switch Back in 2013 2.5% 6.8% 0.5%
Switch in 2012, Do Not Switch Back 2013 11.9% 12.1% 11.8%

By 2011 Plan

Note: The table shows statistics on enrollment and switching rates over the 2011-13 period. The sample
is people enrolled in CommCare in 2011 who are not in the below-poverty income group (who do not pay
premiums so do not experience the premium changes shown in Figure 1), and the columns separate this group
by their plan in 2011. The top panel shows enrollment numbers, and the bottom panel shows switching rates
among people who stay in the market from 2011-13.

sharp relative price rise, followed by a relative price fall. Figure 1 makes it clear that the

price changes most likely to induce this behavior are the changes in the relative prices of

BMC from 2011 to 2013. So, to maximize the probability of getting an upper bound, we

look to maximize ∆∆pd,ci,t,t−1 + ∆∆pc,di,t−1,t−2, where c = BMC and t = 2013. If this is similar

for two or more plan d′s we enlarge D0 to increase precision (assuming the conditions of

Theorem 3.5 are satisfied).

For a lower bound we need swd,ci,t,s > 0, which requires conditioning the yi,t choice on a plan

which differs from the choice in yi,s. There are three possible sequences of choices which could

generate swd,ci,t,s > 0, but two of them involve the agent choosing three different plans, and

we do not have cells that satisfy this and our minimum cell-size condition.14 The remaining

sequence is (yi,t = d, yi,t−1 = c, yi,s = c, yi,s−1 = d), and we require pd,t− pc,t < pd,s− pc,s−1 to

get a positive lower bound. In the contrapositive here the probability of switching into d was

smaller despite the relative price being lower, which indicates significant switching costs. To

ensure we get a lower bound, we use the large price movements between 2012 and 2013, but

this time d = BMC and we chose the c to minimize pd,t − pc,t − (pd,s − pc,s).15

14If each of (d, c, e) represent distinct choices then the other two choice sequences were
(yi,t, yi,t−1, yi,s, yi,s−1) ∈ {(d, c, c, e), (d, e, c, d)}.

15Recall that there are groups who could switch between the 2012 and 2013 open enrollment periods due
to a change in family size or income. Consequently these groups could be conditioning on different choices
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The Estimates. All estimates provided in this section are obtained as follows. We divide

the negative part of each inequality used by its estimated standard errors, stack them, and

compute the inequality with the largest negative value for each candidate κ. As suggested

by Armstrong (2014), this becomes the sample value of the test statistic for that κ. The

simulated value of the test statistics at α = .05 for the given κ were obtained once without

any adjustment for slack moments, and once using the adjustment proposed in Romano,

Shaikh, and Wolf (2014, henceforth RSW), and the variance-covariance required for these

calculations was obtained via a bootstrap.

The results are presented in figures with κ values on the x-axis and the value of the test

statistics on the y-axis. The blue line in each figure provides the value of the test statistic

that the data generates. The long-dashed red line provides the five percent critical value for

the κ values obtained from a test statistic that does not use a correction for slack moments,

and the dotted red line is the test statistic when we use the RSW correction. Acceptable

values of κ are all values where the blue line is lower than the red lines.

Figure 2 provides the results when we use the full set of inequalities listed in table (1).

The blue line crosses the red lines at κ = $19.6 and since it remains below it thereafter

$19.6 becomes κ̂, the lower bound of confidence set κ0 at α = .05. Though there is no upper

bound, notice that the blue line is always noticeably above zero, indicating that there are

inequalities that violate our conditions at high values of κ, but with this many moments our

test statistics do not generate the power required to reject at those values.

Next we estimate using only the exogenously selected inequalities described above. Figure

3 panels (a) to (d) relate to the two groups which satisfy the conditions for yielding upper

bounds. Panel (a) graphs prices facing a particular income group in the Boston area, and

panel (b) graphs the prices for an income group in Western Massachusetts. These two panels

demonstrate that there are groups with price changes in those years that satisfy the condition

for the upper bound, that is for which (pd,i,t− pc,i,t)− (pd,i,t−1− pc,i,t−1) > 0 (with choice c =

BMC). Panels (c) and (d) show the corresponding test statistics and critical values for these

cells. It shows sharp increases in the test statistics from the sample at κ values greater then

in 2012 and 2013 without the choice conditioned on in 2013 being the open enrollment choice in 2012. This
enables us to look at a 2013 choice which does not condition on the 2012 choice, and make use of the large
movements in prices between 2012 and 2013.
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Figure 2: Nonparametric Estimates of Switching Costs (κ0)

Note: The nonparametric estimator restricts the comparisons to individuals with the same choice sets at
time s and t. Cell level moments are constructed, and then aggregated into groups. The lower bound
identified is at $19.6.

$48.5 and $54 respectively. Panels (e) and (f) show test statistics and critical values based

on the two cells that underlie the lower bound in Figure 2.

Panel (g) provides the test statistics when we use the inequalities generated by all four

of the selected groups. When we put the four groups which satisfy our exogenous selection

criteria together we obtain the confidence interval κ0 ∈ [κ̂ = 19.6, κ̂ = 57] and a sample

value of the criterion which is zero between 19.6 and 48.5. So though our estimates indicate

that there are switching costs, they indicate that the switching costs are not higher than

$57. This is about an average month’s premium for an individual, and as discussed in the

introduction, is substantially less than switching costs estimated on this data previously. We

now consider whether parametric estimates are consistent with these nonparametric values,

and then consider their implications.

4 Parametric Models

We want to consider the sources of the difference between the bounds obtained from our

nonparametric procedure and the estimates from prior research. Of particular interest is

our upper bound and the implications of the difference between it and the noticeably higher

point estimates of κ obtained in prior studies of health insurance. To investigate further we
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Figure 3: Average premiums and nonparametric estimators in two selected cells
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(b) Upper bound cell #2

(c) Upper bound cell #1 (d) Upper bound cell #2

(e) Lower bound cell #3 (f) Lower bound cell #4

(g) Combining all four cells

Note: The figures show groups with price changes that generate upper and lower bounds, which come from

BMC’s large price changes from 2011-2013. The groups generating bounds all have a lagged 2011 choice of BMC.

They are defined defined by a given region and income group path (and associated choice set) from 2012-13.

Upper bound cell #1 (panels (a), (c)) has income 250-300% of poverty in 2012-13, in Boston with choice set:

{BMC, CeltiCare, NHP, Network}. Upper bound cell #2 (panels (b), (d)) have income 250-300% of poverty

in 2012-13, in Western MA with choice set: {BMC, CeltiCare, Network}. Lower bound cell #1 (panel (e)) has

income 100-150% of poverty in 2012-13, in Western MA with choice set: {BMC, Network}. Lower bound cell

#2 (panel (f)) has income 100-150% of poverty in 2012 and 150-200% of poverty in 2013, in Western MA with

choice set: {BMC, Network}. 25



compare our nonparametric results to the results we obtain when we use parametric distribu-

tions for disturbances like those used in prior research. We begin by developing parametric

models that allow for state dependence and fixed effects, and then, for comparison, estimate

an assortment of models that do not allow for fixed effects.

Parametric models require a distributional assumption for the random utility distur-

bances and a functional form for βi. We begin by assuming only that βi can be written as a

function of observed variables xi that do not vary over time, or βi = β(xi). In addition the

shape restrictions in a parametric model imply we can identify separate coefficients on price

and the lagged dependent variable, so we re-write the utility function in equation (1.1) as

Ud,i,t = (−pd,itγ0 − 1{yi,t−1 6= d}δ0) β(xi) + λd,i + εd,i,t, (4.1)

where (β(xi), δ0, γ0) > (0, 0, 0). However we remain focused on estimating the tradeoff

between price and switching costs, i.e. on κ0 ≡ δ0/γ0.

We begin by showing that parametric models generate a transparent set of inequalities

that will be available regardless of the exact form of the distribution of εd,i,t. To use these

inequalities, the researcher has to specify a particular functional form for the disturbance

distribution and this can generate additional inequalities. Prior results on our data used a

logistic distribution. So in going to the data we add inequalities that are available for that

case.

General Parametric Inequalities. Given the model in equation (4.1), if Assumption 2.1

holds and (d, c) ∈ Dt ∩ Ds with d 6= c, the logic that led to equation (3.1), now leads to

Pr(yi,t = d, yi,s = c | pi, yi,s−1, xi) ≤ 1−Fd,ct,s
(

(∆∆pd,ci,t,s + κ0sw
d,c
i,t,s)γ0β(xi)

)
. (4.2)

where Fd,ct,s (·) is the distribution of ∆∆εd,ci,t,s, and we have substituted κ0 × γ0 for δ0.

Figure 4 illustrates the intuition behind the bounds on κ0 that this inequality generates.

The left hand side of this inequality is a number we estimate from the data. The right hand

side depends on κ0. If swd,ci,t,s > 0, the boundary of the inequality will be decreasing in κ and

all values smaller than the boundary will be acceptable, producing the red line in the figure.
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If swd,ci,t,s < 0 the boundary of the inequality will increase in κ and we will accept all values

to the right of the boundary. An empirical probability that intersects the resulting triangle

twice, produces an upper (our κ) and a lower (κ) bound to κ0. Notice that the higher is

Pr(yi,t = d, yi,s = c | pi, yi,s−1) the tighter are the bounds we derive.

Figure 4: Identified set for κ0

P l

P h

κhκh κlκl
κ

1−Fd,ct,s (·)

More formally each inequality generated by equation (4.2) generates a line which divides

the (γ, δ) plane into acceptable and non-acceptable half-spaces. The slope and/or quadrant

of the acceptable half-space differs with

• swd,ci,t,s ∈ {−2,−1, 0, 1, 2}, and

• the sign of ∆∆pd,ci,t,s (greater than or less than zero).

This seems to generate twelve different cases. However, recall that if s < t − 1 and we

condition on yi,s−1, we can arrive at (yi,t = d, yi,s = c) from different intermediate yi,t−1

states. If yi,t−1 = r generates an swd,ci,t,s = 1 and equation (4.2) holds for a particular value

of κ, it will also hold for values of yi,t−1 which generate swd,ci,t,s = 2. This implies that

∑
r:swd,c(r,yi,s−1)≥y

Pr(yi,t = d, yi,t−1 = r, yi,s = c|pi, yi,s−1, xi) ≤ 1−F d,c
i,t,s

(
(∆∆pd,ci,t,sγ0 +yδ0)β(xi)

)
.

(4.3)
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Moreover by using the sum, instead of each individual inequality separately, we elevate the

line in figure Figure 4 and generate sharper bounds for κ0. An analogous argument implies

that if the inequality holds for swc,di,t,s = −2 it also holds for swc,di,t,s = −1. So there are only

six cases to consider, and Appendix B considers each case with explanatory graphs.16 The

graphs shows that only four of the six generate restrictions in the appropriate quadrants so

we only use those four cases in our empirical work.17

The Magic of Logits. Next we explore the implications of assuming a Gumbel (logistic)

distribution for ε.

Assumption 4.1. Assumption 2.1 holds and ε1,i,t, . . . , εD,i,t are independent (and identically

distributed) across choices, where ε1,i,t has a standard Gumbel distribution.

Assumption 4.1 yields the traditional logit form for the choice probabilities,

Pd,i,t|yi,t−1
≡ Pr(yi,t = d | pi, yi,t−1, xi, λi)

=
exp[(−pd,i,tγ0 − 1{yi,t−1 6= d}δ0) β(xi) + λd,i]∑
r exp[(−pr,i,tγ0 − 1{yi,t−1 6= r}δ0) β(xi) + λr,i]

≡ Nt(d, yi,t−1)eλd,i

Mt(yi,t−1, λi)
.

So the ratio of the probability of choosing d at t and c at t − 1, to the probability of

choosing c at t and d at t− 1 (conditional on yi,t−2) is

Pd,i,t|c
Pd,i,t−1|yi,t−2

Pc,i,t−1|yi,t−2

Pc,i,t|d
=
Nt(d, yi,t−1 = c)

Nt−1(d, yi,t−2)

Nt−1(c, yi,t−2)

Nt(c, yi,t−1 = d)
× Mt(yi,t−1 = d, λi)

Mt(yi,t−1 = c, λi)
.

Only the last term in this expression depends on the fixed effects and

exp(δ0β(xi)) ≥
Mt(yi,t−1 = d, λi)

Mt(yi,t−1 = c, λi)
≥ exp[−δ0β(xi)].

The ratio of the odds of choosing (yi,t−1 = c, yi,t = d) to (yi,t−1 = d, yi,t = c) is bounded

16This presumes Pr(yi,t = d, yi,s = c | pi, yi,s−1) < .5, as is the case in our data. If the median of

Fd,c
t,s (·) = 0, as it will for our distributional assumption, Fd,c

t,s (Pr(·|·))−1 differs in sign according as Pr(·|·)<>1/2,
and this will double the numer of cases. Appendix B considers this case also.

17These are the inequalities for the following cases: ∆∆sw > 0 and ∆∆p ≥ 0 or ≤ 0; ∆∆sw <
0 and ∆∆p ≥ 0; and ∆∆sw = 0 and ∆∆p ≥ 0.
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by functions that are independent of the {λi}i.18 Rearranging terms we get the inequalities

in the theorem that follows for choice probabilities at t and t− 1. A more detailed argument

shows that similar inequalities are valid for the odds ratio at t and t− 2.19

Theorem 4.2. Suppose Assumption 4.1 holds, s ∈ {t−1, t−2}, and (d, c) ∈ Dt∩Ds. Then,

exp
[
γ0

(
∆∆pc,di,t,s

)
β(x)

]
≤ Pr(yi,t = d, yi,s = c | pi, yi,s−1 = c, xi = x)

Pr(yi,t = c, yi,s = d | pi, yi,s−1 = c, xi = x)

≤ exp
[(

2δ0 + γ0

(
∆∆pc,di,t,s

))
β(x)

]
.

It is worth pointing out that the logit assumption guarantees meaningful upper and lower

bounds on κ0.20

4.1 Parametric Empirical Results

Table 3 provides summary statistics for the data and inequalities used in the parametric

analysis. The only difference between the sample used for the nonparametric analysis (de-

scribed in section 3.3) and that used in the parametric analysis, is that in the parametric

analysis we keep groups who face different plan offerings in the comparison periods (recall

that our assumptions ruled this out for the nonparametric analysis). This increases the size

of the data set considerably. The number of inequalities generated by the parametric analysis

is, on the other hand, much smaller than in the nonparametric analysis.

We begin with the results from models that allow for state dependence but do not allow

for flexible fixed effects. This will enable a comparison of our nonparametric results to the

parametric results from the point identified models. We then proceed to the parametric

18This finding is reminiscent of Chamberlain (1980) who derived a conditional likelihood that did not
depend on the {λi}i for the multinomial logit panel case with no lagged dependent variable.

19See Appendix C. Theorem 4.2 does not exhaust the additional inequalities available when the disturbance
distribution is logistic. Additional inequalities are stated as Theorem C.2 in Appendix C and cover the cases:
(i) yi,s−1 = r /∈ {c, d}; and (ii) s < t − 2. In different applications, these additional inequalities could be
quite useful, but here they are relegated to the appendix as our data does not have groups of sufficient size
to exploit them.

20More precisely, the general inequalities when none of the probabilities are greater than one half need to
produce upper and lower bounds for δ but need only produce an upper bound for γ. A lower bound for γ
is needed to produce an upper bound to κ ≡ δ/γ. Under the logit assumption, both log odds ratios have
positive probability, so the first inequality in Theorem 4.2 provides upper [lower] bound information on γ0
when ∆∆pc,di,t,s is positive [negative]. The second inequality yields lower bound information on δ0.
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Table 3: Summary Statistics for the Parametric Estimator

(s, t) Number of
Members

Number of
Groups

Number of
Members

Above
Cutoff

Number of
Groups
Above
Cutoff

Number of
Moments

(2009, 2010) 59,322 100 32,738 69 248
(2009, 2011) 39,955 100 24,740 78 296
(2010, 2011) 59,629 100 34,300 83 217
(2012, 2013) 69,441 125 43,138 99 522
Total 228,347 425 134,916 329 1,283

Notes: The table shows sample statistics for the parametric estimator, analogous to Table 1 for the

nonparametric estimator. The minimum cell size cutoff is 20 members.

models that allow for fixed effects, and ask whether these are consistent with our nonpara-

metric results. All results, both from the comparison models and from the models of section

4, assume that the distribution of the disturbances is logistic. Note that this generates a dis-

tribution for the double difference of disturbances (for ∆∆εd,ci,t,s) that is analytic, simplifying

computation.21

4.2 State Dependence Without Fixed Effects

Table 4 summarizes the results from a number of specifications. The estimate of the switching

cost is always obtained as the ratio of the lagged dependent variable coefficient to the price

coefficient.22

The first three columns of the table present results from specifications in which the

individual-specific fixed effects used in the inequality analysis are replaced with increasingly

detailed interactions of individual characteristics with plan dummies. Column (1) has no plan

21That distribution and its density are

F (y) =
exp(y)(y − 1) + 1

(exp(y)− 1)2
, and f(y) =

exp(y)(exp(y)(y − 2) + y + 2)

(exp(y)− 1)3
.

22Its standard error is obtained from a Taylor expansion (i.e., the Delta method), which in this context
should be accurate as all the price coefficients are two or more orders of magnitude greater than their standard
errors. As in all discrete choice models the comparison models require a normalization. We normalize the
disturbance to have a standard Gumbel distribution (with variance of π2/3). So both the coefficient of
price and of the lagged dependent variable should be thought of as the variable’s coefficient divided by this
standard error.
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Table 4: Multinomial Logit Estimation

Simple Plan Detailed Detailed Plan Dum. Include New Enr
Dummies Plan Dum. Plan Dum. + Random New Enr + Random

+ Network Effects Effects
(1) (2) (3) (4) (5) (6) (7)

Normalize εi,d,t to EV1

Switching Cost (δ) -4.086 -4.196 -4.156 -4.120 -4.480 -3.974 -4.478
(0.006) (0.007) (0.007) (0.007) (0.014) (0.006) (0.010)

Price Coefficient (β) -0.036 -0.049 -0.051 -0.053 -0.051 -0.036 -0.041
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Hospital Network Utility — — — 0.137 — — —
(0.007)

Prev. Used Hospitals Covered — — — 0.804 — — —
(0.019)

Prev. Used x Partners Hosp. — — — 0.974 — — —
(0.026)

Normalize β to 1

Switching Cost (κ = δ/β) 114.03 86.35 80.76 78.13 87.88 110.79 110.17
(0.55) (0.34) (0.32) (0.30) (0.35) (0.43) (0.44)

Plan Dummies — Yes Yes Yes Yes Yes Yes
Plan x (Area, Age-Sex, Illness) — — Yes Yes — — —
Plan Random Effects — — — — Yes — Yes
N Parameters 2 7 249 252 11 7 12
N Individuals x Years 2,623,699 2,623,699 2,623,699 2,623,699 2,623,699 3,832,629 3,832,629

dummies; column (2) has simple plan dummies; and column (3) interacts each plan dummy

with 20 age-sex groups, 38 geographic areas (“service areas” determined by the state), and

with three chronic illness groups (where the three sets of interactions are additively separa-

ble). After excluding interactions with no observations, this generates 247 dummy variables

(which with the price and switching variables, implies 249 total model parameters).

Column (4) further adds three variables designed to measure individual-specific aspects of

the hospital network that our cell-specific variables do not capture. These variables, taken

from Shepard (2022), are a “network utility” variable calculated from the indirect utility

from a hospital choice model, which captures the option demand value of access to the

plan’s network (Capps et al., 2003), and two variables which measure the share of a patient’s

previously used hospitals that are covered by each plan, capturing prior experience with the

network’s hospitals (one allows for interaction with Partners Healthcare hospitals, for which

loyalty seemed to be especially strong). Shepard (2022) finds these network variables to be

highly statistically significant, and they remain so after we include the 247 interactions with
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the plan dummies.

The switching cost estimate declines monotonically as we add interactions, from $114.03

(0.55) to $78.13 (0.30), where here and below the numbers in parentheses are standard errors.

Including more detailed plan dummies and network variables does improve the model’s ability

to capture unobserved preference heterogeneity. But notably, these estimates of κ0 are all

substantially larger than the upper bound of $57 generated by the nonparametric results.

This suggests that there is still substantial unobserved heterogeneity even with the very

detailed specification of column (4).

Next we replace the fixed effects in the inequality analysis with random effects. That is

we interact the plan dummies with agent-specific independent normal random variables that

are held constant over the period the individual is observed, and use simulated maximum

likelihood to estimate. We begin the random effect analysis by allowing for random effects

conditional on the first observed choice. So this analysis assumes both that: (i) the within

group variance in the plan specific effects is normal with variances that vary by plan (but

not by group), and (ii) is uncorrelated with the initial observed choice. This mimics what

researchers have done in related problems when they do not have sufficient information on

the actual initial choices of individuals. The results from this specification are provided in

column (5) of the table. The random effects model generates a switching cost of $87.88

(0.35), and estimated dummy variables for the plan and standard errors for the random

effects which are both highly significant for all but the smallest plan (Fallon). The t-values

for the standard errors varied from eight to over fifty.

We are in the enviable position of knowing the first time a consumer enters the Mas-

sachusetts exchange. So provided we are willing to assume that any pre-exchange health

choices of these individuals does not influence their behavior on the exchange, we can imple-

ment an “initial conditions estimator” that allows for normal random draws on preferences

for the exchange’s plans that are known to the consumers before making their first choice.

Column (7) provides the simulated maximum likelihood estimates for this specification.23

Since column (7) adds the first choice to the switching choices analyzed in columns (1) to

23We also tried to use the estimator suggested by Honoré and Kyriazidou (2000), an estimator which does
allow for both fixed effects and switching costs. However, their restrictions left us with data on 36 individuals
and 144 choices, which was not sufficient to obtain estimates with reasonable precision.
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(5), it uses a different data set than those columns did. So for comparison column (6) uses

the column (7) data in a model without random effects; i.e. column (6) mimics column (2)

but uses the data set used in column (7).

When we include initial choices and simple plan dummies (but no random effects) in

column (6), our estimated switching cost is $110.79 (0.43), noticeably larger than in the

analogous specification without initial choices (column (2)). When we also include random

effects in column (7), the plan dummies and the estimated standard deviations of the random

effects for all plans are estimated to be even larger than those from column (5), with t-values

for the estimated variances of the plan specific random effects for all plans (including Fallon)

now ranging from twelve to over one hundred. Perhaps more surprising is that the estimates

of κ0 in both columns (6) and (7) are quite similar at $110.79 (0.43) and $110.17 (0.44).

Part of the reason that the initial condition estimator generates relatively large values of

κ0 may be that some consumers had experience in making health insurance choices before

entering CommCare. This might have generated priors when entering the program that

plans differed in their coverage, out of pocket payments, etc. After entering they would have

learned that regulation requires these features to not vary across plans. As a result they

become more price sensitive in subsequent periods.24

We conclude that models that do not allow for individual by product fixed effects generate

estimates of κ0 that lie somewhere between $78 and $114. This accords well with published

work on the CommCare data which contains estimates of about $100 (see Shepard (2022)).

Recall from Figure 1 that average monthly premiums ranged from $20 to $90. So the models

without fixed effect generate switching costs which are four to five times the average monthly

premium for the lowest cost plan and about equal to the average monthly premium for the

highest cost plan. These estimates are noticeably larger than the nonparametric upper

bound obtained from our analysis. There is a question of how much of the difference can be

attributed to the logit assumption and how much to the absence of fixed effects.

24For a model with fixed effects that explicitly allows for Bayesian learning see Aguirregabiria et al. (2021).
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4.3 Parametric Estimators That Allow For Fixed Effects.

This subsection uses the inequalities from section 4, and the sample described in Table 3

(also used in columns (1) to (5) of Table 4), to estimate bounds on κ0. This generates over

1,200 inequalities from about 330 groups with an average size of over 400 individuals.

When we used the estimation algorithm described at the beginning of section 4 for the

current specification, the simulated value of the test statistic obtained from the normal

approximation to the distribution of the moments often implied probabilities that were neg-

ative, rendering the assumptions underlying that asymptotic approximation inappropriate.

We present the point estimate from that estimation algorithm but do not want to rely on

its simulated test statistics for inference. Instead we use the Bayesian approach proposed by

Kline and Tamer (2020) with the implementation in Chamberlain and Imbens (2003). This

combines an uninformative prior with the data to generate a multinomial posterior distribu-

tion for the probabilities.25 We then take draws from this posterior, calculate the (possibly

set-valued) estimate of the parameters that minimizes the sup-norm of the negative part of

the inequalities for each draw, and then find a conservative 95 percent confidence set for γ0,

δ0, and separately for κ0 ≡ δ0/γ0.

The results are plotted in (γ, δ) space in Figure 5. The point estimate from minimizing

the largest of the negative parts of the moments is given by the dark blue dot. The 95%

confidence sets for γ0, δ0 and linear combinations of the two are obtained from the 2.5%

and 97.5% quantiles of the distribution of their lower and upper bounds found from the

posterior draws. The accepted (γ0, δ0) combinations are given by the area interior to the

shape produced by the blue dots in the figure. The (γ0, δ0) combinations that generated our

lower and upper nonparametric bounds for κ0 are given by the dashed grey lines.

The “point estimate” of κ0 from the moment minimization problem was κ̂=$48.3. Recall

25Treating the choice probabilities for each cell as a multinomial distribution, Chamberlain and Imbens
(2003) show that the Dirichlet distribution with parameters set to the observed frequencies is the poste-
rior distribution for the multinomial distribution with uninformative Dirichlet prior. Since the parameter
identified set is a simple transformation of the cell probabilities, we follow Kline and Tamer (2020) and
form a credible set for the identified set by straightforward simulation from the Dirichlet posterior. Given
the large number of inequalities, when a simulated draw of probabilities generates an empty identified set,
we conservatively include the parameter value(s) that minimize the criterion based on the worst violation
of the inequalities. Kline and Tamer (2020) show the asymptotic connection to a frequentist confidence
interpretation of the resulting intervals.
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Figure 5: Identified set and Bayesian confidence set for γ0 and δ0.

Notes: Cell-level moments based on the general parametric and the magic of logit inequalities are con-
structed, and then aggregated into groups. The area inside the dashed blue curve is the Bayesian confidence
set for the estimates of (γ, δ). The dashed gray lines represent the upper and lower bounds on κ (= δ/γ)
from the nonparametric estimator in Section 3.

that Figure 3 showed a large but statistically insignificant jump in the sample test statistic

of the nonparametric results at $48.5. So the parametric assumptions seem to be consistent

with, but more powerful than, the nonparametric results.

To get a more precise quantification of the power generated by the parametric assump-

tions we use the 95% credible interval produced by the Bayesian bootstrap. This generates

estimates of κ̂ = $32 and of κ̂ = $56. Recall that the lower bound from our nonparamet-

ric estimates was $20, so the parametric assumptions lead to a considerably tighter lower

bound than the nonparametric analysis. However, the upper bound, which is the bound

of particular interest, is almost identical to the upper bound of $57 we obtained from the

nonparametric results.

Moreover, as should be the case if our assumptions are an adequate approximation to

reality, the confidence set from the parametric analysis that allows for individual-by-product
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specific fixed effects lies within the bounds obtained from the nonparametric analysis that

allows for fixed effects. On the other hand the entire confidence set lies well below any of

the point estimates obtained from the comparison models in section 4.2 that do not allow

for fixed effects. So the comparison models seem to overestimate the switching cost by a

considerable amount. We turn next to an investigation of whether this difference is likely to

influence the economic implications of the estimated models.

4.4 Counterfactual Comparisons.

We now explore whether the difference between the κ0 bounds obtained from the inequality

estimator, and the κ0 estimates obtained from the comparison models that allow for state

dependence but not individual-by-product specific fixed effects, is likely to have economically

important implications for a counterfactual of interest. Figure 1 showed that BMC, the

largest plan with over a third of the market in 2011 (see Table 2), increased its relative price

dramatically in 2012 and then decreased it by an even greater amount in 2013. We consider

predictions for what would have happened had they instead kept their price constant at the

average of the 2012 and 2013 prices in those two years.

The calculation conditions on the 2011 choices of enrolled individuals. We then predict

BMC’s market share in 2012 twice; once using the actual and once the counterfactual prices.

Finally, we use these predictions and the actual and counterfactual prices in 2013 to obtain

the predicted shares from the counterfactual policy for the two year period from 2011-

2013. The predictions for these sequences are done in pairs, one of which uses the (γ0, δ0)

estimates from a comparison model in Table 4, the other uses the γ0 estimate from the

relevant comparison model but restricts δ to equal γκ̂ where κ̂ = $48.28, as in Figure 5. The

latter need not equal what our model would predict, as that would require either a model

or bounds for the {λi,d}i,d. Still, the difference between the two predictions should provide

an indication of whether the implications of a model that allowed for fixed effects are likely

to be different than a model which does not.

Table 5 provides the results. The bottom row shows that the average actual BMC

premiums, averaged over all incumbent enrollees who were not in the below-poverty group

(and hence paid premiums), was $58.4 per month in 2011. In 2012 that average increased
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Table 5: Counterfactual Comparisons

2011 2012 2013
Specification market shares status-quo counterfactual % diff status-quo counterfactual % diff

Market shares without imposing κ

Plan FE 0.357 0.289 0.321 11.0 0.266 0.304 14.2
Plan × Region FE 0.357 0.289 0.320 10.6 0.266 0.298 12.2

Plan FE + RE 0.357 0.282 0.324 15.1 0.289 0.311 7.6

Market shares imposing κ

Plan FE 0.357 0.186 0.306 64.1 0.399 0.326 -18.3
Plan × Region FE 0.357 0.205 0.313 52.8 0.381 0.318 -16.6

Plan FE + RE 0.357 0.183 0.305 66.8 0.410 0.329 -19.7

Premium 58.4 91.1 62.9 41.5 65.3

Note: Table shows a counterfactual comparison of BMC market shares among current enrollees above
100% FPL. The top panel shows observed market shares in 2011, and then predicted market shares
under status-quo premium and counterfactual premium, as well as their percentage difference in 2012
and 2013. We include results based on two FE specifications and one random coefficient specification.
“Imposing κ” indicates whether we restrict the switching cost coefficient. The bottom panel shows the
average BMC premium under status-quo and counterfactual in 2011-2013.

to $91.1, and in 2013 it fell to $41.5; the changes that generated the sharp spike in the price

plot in Figure 1. We consider counterfactual prices that equal the average of the prices in

2012 and 2013 in each income group, and then hold that price fixed in both years. That

results in an average price of $63 in 2012 and $65 in 2013 (with the slight difference coming

from changes in the relative size of different income groups in the two years).

The actual predictions differ somewhat between the pairs defined by the comparison

models but their qualitative nature does not. The fall in price in 2012 from the $91.1 to

$63 leads to a prediction of an 11% to 15% increase in share when we use the parameters

estimated by the comparison models, but a prediction of a dramatic 53% to 67% increase in

share when we constrain κ̂ = 48.28. In 2013 when the counterfactual average price was $65

compared to the actual average price of $41.5 , the estimates from the comparison models

predict an 8 to 14% higher share from the higher counterfactual price. In contrast when we

use κ̂ = 48.28 the higher counterfactual price in 2013 generates a two period prediction of a

17 to 20% lower share than the prediction from the status quo prices.

Recall that this is the prediction for 2013 which conditions on 2011 shares and the

counterfactual prices in both 2012 and 2013. The comparison models do predict the shares
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fall from 2012 to 2013 (by 1 to 2%). However because the comparison models’ estimates of

κ0 are so high, this decrease is more than offset by the comparison model’s increased share in

2012. That is, the impact of the higher κ0 estimates on the comparison models’ prediction in

any one year spills over to the following years, making longer term predictions particularly

problematic.

5 What Have We Learned?

We have provided both empirical results on switching costs in health insurance choices and

methodological results on estimating models with individual by choice specific fixed effects

and state dependence.

Our empirical results indicate that health insurance estimates of state dependence that

do not allow for very flexible unobserved heterogeneity seem to seriously bias estimates of

switching costs upwards; in our data by a factor of 37-100 percent. We found this bias

regardless of whether the comparison model (without individual-by-product fixed effects)

allows for a rich set of plan interactions, random effects conditional on the initial choice, or

random effects known prior to the initial choice. It appears important to allow for flexible

individual-level preferences, likely because of the very heterogeneous way that similar con-

sumers value plan provider networks (the key plan attribute in our context). For instance,

people may care very strongly about whether their current doctor is covered in a given plan

(Shepard, 2022; Tilipman, 2022), an individual-by-plan specific match factor that is not

likely to be captured with coarse plan interactions.

Our counterfactual, the reversal of what seems to be a failed pricing experiment by the

largest insurer, illustrated that the difference in estimated switching costs matters. The

comparison models’ predicted a one year share change of 10-15% while when we use our

estimate of κ we find a share change of 55-65%. Moreover the analogous predicted differences

for the share change over the two years that includes the insurer’s policy reversal actually

differ in sign; so longer-term predictions using the comparison models’ κ estimates can be

particularly problematic.

Our methodological results on estimators that allow for both state dependence and fixed
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effects depend on what the researcher is willing to assume on the distribution of the distur-

bances. If one does not want to assume a parametric distribution for ε and switching prob-

abilities are less than a half, then finite positive bounds for κ0, the ratio of price sensitivity

to switching costs, are obtained by employing Assumption 3.2, the stationarity assumption.

If switching probabilities are greater than a half, then nonparametric revealed preference

inequalities can be used to bound κ0 either with or without adding the inequalities from

the stationarity assumption. If we are willing to make a parametric assumption on the ε

distribution, then we can obtain tighter bounds. Moreover if the specified distribution is

the logistic distribution, then there will be positive finite upper and lower bounds that are

exceptionally easy to compute.
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Appendix: For Online Publication

A Plan Hospital Networks

Figure 6: Hospital Coverage in Massachusetts Exchange Plans
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NOTE: The graph shows the shares of Massachusetts hospitals covered by each CommCare plan, where
shares are weighted by hospital bed size in 2011. Fallon’s hospital coverage share is much lower than other
plans largely because it mainly operates in central Massachusetts and therefore does not have a statewide
network. The large decline in Network Health’s network size in 2012 reflects its dropping of the Partners
Healthcare System and several other providers from its network.
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B Revealed Preferences Cases

Below we graphically display the information on the parameters (γ0, δ0) contained in the

equation (4.3). Given y, define

q∗ =
(F d,c

t,s )−1
(

1−
∑

r:swd,c(r,yi,s−1)≥y Pr(yi,t = d, yi,t−1 = r, yi,s = c|z, yi,s−1)
)

β(xi)

Figure 7 [8] considers the case where q∗ > 0 [< 0]. If F d,c
t,s (0) = 0.5, then the case q∗ > 0 [< 0]

corresponds to
∑

r:swd,c(r,yi,s−1)≥y Pr(yi,t = d, yi,t−1 = r, yi,s = c|z, yi,s−1) < 0.5 [ > 0.5].

Figure 7: Inequalities for q∗ > 0
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Two cases in Figure 7 corresponding to ∆∆pd,ci,t,s < 0 and y ≤ 0 are uninformative. For

these cases, the whole first quadrant satisfies the inequality. In our empirical work, we use

the remaining four cases to inform bounds on κ0. As noted previously, the case q∗ < 0 does

not occur in the empirical work, so we do not make use of the cases in Figure 8.
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Figure 8: Inequalities for q∗ < 0
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C Proofs

Proof of Lemma 3.3:

For all c 6∈ D0, d ∈ D0,

(−pc,i,s − 1{yi,s−1 6= c}κ0) βi − (−pd,i,s − 1{yi,s−1 6= d}κ0) βi + (λc,i − λd,i)

≥ (−pc,i,t − 1{yi,t−1 6= c}κ0) βi − (−pd,i,t − 1{yi,t−1 6= d}κ0) βi + (λc,i − λd,i)

Hence,{
εi,s
∣∣ εd,i,s ≥ maxc 6∈D0 (−pc,i,s − 1{yi,s−1 6= c}κ0) βi

− (−pd,i,s − 1{yi,s−1 6= d}κ0) βi + (λc,i − λd,i) + εc,i,s]

}
⊆
{
εi,t
∣∣ εd,i,t ≥ maxc 6∈D0 [(−pc,i,t − 1{yi,t−1 6= c}κ0) βi

− (−pd,i,t − 1{yi,t−1 6= d}κ0) βi + (λc,i − λd,i) + εc,i,t]

}
=

{
εi,t
∣∣ (−pd,i,t − 1{yi,t−1 6= d}κ0) βi + λd,i + εd,i,t ≥

maxc 6∈D0 [(−pc,i,t − 1{yi,t−1 6= c}κ0) βi + λc,i + εc,i,t]

}
So,

Pr(yi,t ∈ D0 | pi, yi,t−1, βi, λi)

= Pr

( ⋃
d∈D0

{
εi,t
∣∣ (−pd,i,t − 1{yi,t−1 6= d}κ0) βi + λd,i + εd,i,t

≥ max
c 6∈D0

[(−pc,i,t − 1{yi,t−1 6= c}κ0) βi + λc,i + εc,i,t]

} ∣∣∣∣ βi, λi)
≥ Pr

( ⋃
d∈D0

{
εi,s
∣∣ (−pd,i,s − 1{yi,s−1 6= d}κ0) βi + λd,i + εd,i,s

≥ max
c 6∈D0

[(−pc,i,s − 1{yi,s−1 6= c}κ0) βi + λc,i + εc,i,s]

} ∣∣∣∣ βi, λi)
= Pr(yi,s ∈ D0 | pi, yi,s−1, βi, λi)
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In the second and third probabilities, the terms pi,t, pi,s, yi,t−1, and yi,s−1 denote the

realized value of the price variable and lagged dependent variable from the conditioning

statement.

�

Proof of Theorem 3.5:

(a) The supposition of Lemma 3.3 is satisfied for D0 and yi,t−1 = d′ for any d′ ∈ D0. Hence,

Pr(yi,t ∈ D0, yi,t−1 ∈ D0 | pi, yi,t−2, βi, λi)

=
∑
d′∈D0

Pr(yi,t ∈ D0, yi,t−1 = d′ | pi, yi,t−2, βi, λi)

=
∑
d′∈D0

Pr(yi,t ∈ D0 | pi, yi,t−1 = d′, βi, λi) · Pr(yi,t−1 = d′ | pi, yi,t−2, βi, λi)

≥
∑
d′∈D0

Pr(yi,t−1 ∈ D0 | pi, yi,t−2, βi, λi) · Pr(yi,t−1 = d′ | pi, yi,t−2, βi, λi)

= [Pr(yi,t−1 ∈ D0 | pi, yi,t−2, βi, λi)]
2

Next, apply Jensen’s Inequality to integrate out (βi, λi).

Pr(yi,t ∈ D0, yi,t−1 ∈ D0 | pi, yi,t−2)

= E [ Pr(yi,t ∈ D0, yi,t−1 ∈ D0 | pi, yi,t−2, βi, λi) | pi, yi,t−2]

≥ E
[

[Pr(yi,t−1 ∈ D0 | pi, yi,t−2, βi, λi)]
2 | pi, yi,t−2

]
≥ [E [ Pr(yi,t−1 ∈ D0 | pi, yi,t−2, βi, λi) | pi, yi,t−2]]2

= [Pr(yi,t−1 ∈ D0 | pi, yi,t−2)]2

(b) s < t− 1.
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The supposition of Lemma 3.3 is satisfied for D0 and yi,t−1 = d′ for any d′ ∈ D1. Hence,

Pr(yi,t ∈ D0, yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1, βi, λi)

=
∑
d′∈D1

Pr(yi,t ∈ D0, yi,t−1 = d′, yi,s ∈ D0 | pi, yi,s−1, βi, λi)

=
∑
d′∈D1

Pr(yi,t ∈ D0 | pi, yi,t−1 = d′, βi, λi) · Pr(yi,t−1 = d′, yi,s ∈ D0 | pi, yi,s−1, βi, λi)

≥
∑
d′∈D1

Pr(yi,s ∈ D0 | pi, yi,s−1, βi, λi) · Pr(yi,t−1 = d′, yi,s ∈ D0 | pi, yi,s−1, βi, λi)

= Pr(yi,s ∈ D0 | pi, yi,s−1, βi, λi) · Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1, βi, λi)

≥ [Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1, βi, λi)]
2

Next, apply Jensen’s Inequality to integrate out (βi, λi).

Pr(yi,t ∈ D0, yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1)

= E [Pr(yi,t ∈ D0, yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1, βi, λi) | pi, yi,s−1]

≥ E
[
Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1, βi, λi)

2 | pi, yi,s−1

]
≥ (E [Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1, βi, λi) | pi, yi,s−1])2

= [Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | pi, yi,s−1)]2

�

Derivation of Equation (4.2):
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A≡
{

(εi,t, εi,s) | (−pd,i,t−1{yi,t−1 6= d}κ0)γ0β(xi) + λd,i + εd,i,t ≥

maxd′ 6=d (−pd′,i,t − 1{yi,t−1 6= d′}κ0) γ0β(xi) + λd′,i + εd′,i,t,

(−pc,i,s − 1{yi,s−1 6= c}κ0) γ0β(xi) + λc,i + εc,i,s ≥

maxc′ 6=c (−pc′,i,s − 1{yi,s−1 6= c′}κ0) γ0β(xi) + λc′,i + εc′,i,s

}
⊂
{

(εi,t, εi,s) | (−pd,i,t − 1{yi,t−1 6= d}κ0) γ0β(xi) + λd,i + εd,i,t ≥

(−pc,i,t − 1{yi,t−1 6= c}κ0) γ0β(xi) + λc,i + εc,i,t,

(−pc,i,s − 1{yi,s−1 6= c}κ0) γ0β(xi) + λc,i + εc,i,s

≥ (−pd,i,s − 1{yi,s−1 6= d}κ0) γ0β(xi) + λd,i + εd,i,s

}
⊂
{

(εi,t, εi,s) |∆∆εd,ci,t,s ≥
(

∆∆pd,ci,t,s + κ0sw
d,c
i,t,s)

)
γ0β(xi)

}
,

which implies

Pr(yi,t = d, yi,s = c | pi, yi,s−1, xi, λi) ≤ Pr((εi,t, εi,s) ∈ A | pi, yi,s−1, xi, λi)

≤ Pr(∆∆εd,ci,t,s ≥
(

∆∆pd,ci,t,s + κ0sw
d,c
i,t,s)

)
γ0β(xi) | pi, yi,s−1, xi, λi)

Integrate both sides with respect to the conditional distribution of λi, and the result

follows.

Derivation of Equation (4.3):

Take s < t− 1.

Define

Bd,c
t,s (p, y, xi) =

{
(εi,t, εi,s) |∆∆εd,ci,t,s ≥ (pγ0 + yδ0)β(xi)

}
and note that since Fd,ct,s denotes the c.d.f. of the conditional distribution of ∆∆εd,ci,t,s

Pr((εi,t, εi,s) ∈ Bd,c
t,s (p, y, xi) | pi, yi,s−1, xi) = 1−Fd,ct,s ((pγ0 + yδ0)β(xi))

where p, y are constant values or functions of the conditioning set.

49



Using the same argument as above,

A(r)=

{
(εi,t, εi,s) | (−pd,i,tγ0−1{r 6= d}δ0)β(xi) + λd,i + εd,i,t

≥ maxd′ 6=d (−pd′,i,tγ0 − 1{r 6= d′}δ0) β(xi) + λd′,i + εd′,i,t,

(−pc,i,sγ0 − 1{yi,s−1 6= c}δ0) β(xi) + λc,i + εc,i,s ≥

maxc′ 6=c (−pc′,i,sγ0 − 1{yi,s−1 6= c′}δ0) β(xi) + λc′,i + εc′,i,s

}
⊂
{

(εi,t, εi,s) |∆∆εd,ci,t,s ≥
(

∆∆pd,ci,t,sγ0 + swd,c(r, yi,s−1)δ0

)
β(xi)

}
= Bd,c

t,s (∆∆pd,ci,t,s, sw
d,c
i,t,s(r, yi,s−1), xi)

Note that if δ0 ≥ 0 and y′ ≥ y, then Bd,c
t,s (p, y′, xi) ⊂ Bd,c

t,s (p, y, xi). It follows that for any

r such that swd,c(r, yi,s−1) ≥ y, A(r) ⊂ Bd,c
t,s (∆∆pd,ci,t,s, y, βi). And so,

⋃
r:swd,c(r,yi,s−1)≥y

A(r) ⊂ Bd,c
t,s (∆∆pd,ci,t,s, y, xi).

Then,

∑
r:swd,c(r,yi,s−1)≥y

Pr(yi,t = d, yt−1 = r, yi,s = c | pi, yi,s−1, βi, λi)

≤
∑

r:swd,c(r,yi,s−1)≥y

Pr({(εi,t, εi,s) ∈ A(r)} ∩ {yi,t−1 = r} | pi, yi,s−1, βi, λi)

≤ Pr

(
(εi,t, εi,s) ∈

⋃
r:swd,c(r,yi,s−1)≥y

A(r) | pi, yi,s−1, βi, λi

)
≤ Pr((εi,t, εi,s) ∈ Bd,c

t,s (∆∆pd,ci,t,s, y, βi) | pi, yi,s−1, βi, λi) (C.1)

The equation follows by integrating out both sides of the inequality with respect to the

conditional distribution of λi. �

Lemma C.1. (a) Let Mt(c, λi) =
∑

r∈Dt exp[(−γ0pr,t − δ01{c 6= r})β(x) + λr,i]. For any

c, d,

e−δ0β(x) ≤ Mt(d, λi)

Mt(c, λi)
≤ eδ0β(x)

(b) Let St,s(d, c, λi) =
∑

r∈Dt−1,r′∈Ds+1

exp[−δ0(1{r 6=d}+1{c 6=r′})β(x)−γ0pr′,i,s+1β(x)+λr′,i)
Mt(r,λi)
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· Pr(yi,t−1 = r | pi, yi,s+1 = r′, xi = x, λi). For any c, d,

e−2δ0β(x) ≤ St,s(d, c, λi)
St,s(c, d, λi)

≤ e2δ0β(x)

Proof of Lemma C.1:

(a) For any c, d, r, −1− 1{c 6= r} ≤ −1{d 6= r} ≤ 1− 1{c 6= r}, and so

e−δ0β(x)Mt(c, λi) =
∑
r∈Dt

eδ0β(x)(−1−1{c 6=r}) exp[−γ0pr,tβ(x) + λr,i]

≤
∑
r∈Dt

eδ0β(x)(−1{d6=r}) exp[−γ0pr,tβ(x) + λr,i]

= Mt(d, λi) ≤
∑
r∈Dt

eδ0β(x)(1−1{c 6=r}) exp[−γ0pr,tβ(x) + λr,i]

= eδ0β(x)Mt(c, λi)

Result (a) follows.

(b) For any c, d, r, r′,

−2− 1{r 6= c} − 1{d 6= r′} ≤ −1{r 6= d} − 1{c 6= r′} ≤ 2− 1{r 6= c} − 1{d 6= r′}.

Hence,

e−2δ0β(x)St,s(c, d, λi)

=
∑

r∈Dt−1,r′∈Ds+1

eδ0(−2−1{r 6=c}−1{d 6=r′})β(x)e
−γ0pr′,i,s+1β(x)+λr′,i

Mt(r,λi)

·Pr(yi,t−1 = r | pi, yi,s+1 = r′, xi = x, λi)

≤
∑

r∈Dt−1,r′∈Ds+1

eδ0(−1{r 6=d}−1{c6=r′})β(x)e
−γ0pr′,i,s+1β(x)+λr′,i

Mt(r,λi)

·Pr(yi,t−1 = r | pi, yi,s+1 = r′, xi = x, λi)

= St,s(d, c, λi)

≤
∑

r∈Dt−1,r′∈Ds+1

eδ0(2−1{r 6=c}−1{d6=r′})β(x)e
−γ0pr′,i,s+1β(x)+λr′,i

Mt(r,λi)

·Pr(yi,t−1 = r | pi, yi,s+1 = r′, xi = x, λi)

≤ e2δ0β(x)St,s(c, d, λi)

and (b) follows. �

The following theorem extends the results in Theorem 4.2.
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Theorem C.2. Suppose Assumption 4.1 holds, and (d, c) ∈ Dt∩Ds. Let τ = 1{r = c}, and

Λ =

 1 if s = t− 1 or t− 2

3 if s < t− 2

Then, for s ≤ t− 1 and r 6= d,

Pr(yi,t = c, yi,s = d | pi, yi,s−1 = r, xi = x) e(τ−Λ)δ0β(x)eγ0(∆∆pc,dt,s)β(x)

≤ Pr(yi,t = d, yi,s = c | pi, yi,s−1 = r, xi = x)

≤ Pr(yi,t = c, yi,s = d | pi, yi,s−1 = r, xi = x) e(τ+Λ)δ0β(x)eγ0(∆∆pc,dt,s)β(x)

Remark C.3. The case r = d is implied by the case r = c.

Proof of Theorem C.2:

(i) s = t− 1.

Pr(yi,t = d, yi,t−1 = c | pi, yi,t−2, xi = x, λi)

= Pr(yi,t = d | pi, yi,t−1 = c, xi = x, λi) Pr(yi,t−1 = c | pi, yi,t−2, xi = x, λi)

=
e(−γ0pd,i,t−δ01{c 6=d})β(x)+λd,i

Mt(c, λi)

e(−γ0pc,i,t−1−δ01{yi,t−2 6=c})β(x)+λc,i

Mt−1(yi,t−2, λi)

=
e−γ0pd,i,tβ(x)e(−γ0pc,i,t−1−δ01{yi,t−2 6=c})β(x)e−δ01{c 6=d}β(x)eλd,i+λc,i

Mt(c, λi)Mt−1(yi,t−2, λi)

Similarly, for Pr(yi,t = c, yi,t−1 = d | pi, yi,t−2, xi = x, λi).

So,

Pr(yi,t = d, yi,t−1 = c | pi, yi,t−2, xi = x, λi)

Pr(yi,t = c, yi,t−1 = d | pi, yi,t−2, xi = x, λi)

=
e−γ0pd,i,tβ(x)e(−γ0pc,i,t−1−δ01{yi,t−2 6=c})β(x)Mt(d, λi)

e−γ0pc,i,tβ(x)e(−γ0pd,i,t−1−δ01{yi,t−2 6=d})β(x)Mt(c, λi)

= exp
[
−γ0

(
∆∆pd,ci,t,t−1

)
β(x)

]
exp [−δ0 (1{yi,t−2 6= c} − 1{yi,t−2 6= d}) β(x)]

·Mt(d, λi)

Mt(c, λi)
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By Lemma C.1,

Pr(yi,t = c, yi,t−1 = d | pi, yi,t−2, xi = x, λi) e
−δ0β(x)e−γ0(∆∆pd,ci,t,t−1)β(x)

·e−δ0(1{yi,t−2 6=c}−1{yi,t−2 6=d})β(x)

≤ Pr(yi,t = d, yi,t−1 = c | pi, yi,t−2, xi = x, λi)

≤ Pr(yi,t = c, yi,t−1 = d | pi, yi,t−2, xi = x, λi) e
δ0β(x)e−γ0(∆∆pd,ci,t,t−1)β(x)

·e−δ0(1{yi,t−2 6=c}−1{yi,t−2 6=d})β(x)

The result for the case s = t− 1 follows by integrating out λi.

(ii) s = t− 2.

Pr(yi,t = d, yi,t−2 = c | pi, yi,t−3, xi = x, λi)

=
∑

r∈Dt−1

Pr(yi,t = d | pi, yi,t−1 = r, xi = x, λi) Pr(yi,t−1 = r | pi, yi,t−2 = c, xi = x, λi)

·Pr(yi,t−2 = c | pi, yi,t−3, xi = x, λi)

=

 ∑
r∈Dt−1

e−δ0(1{r 6=d}+1{c6=r})β(x)e−γ0pr,i,t−1β(x)+λr,i

Mt(r, λi)


·e
−γ0pd,i,tβ(x)e−γ0pc,i,t−2β(x)−δ01{yi,t−3 6=c}β(x)eλd,i+λc,i

Mt−1(c, λi)Mt−2(yi,t−3, λi)

Similarly, for Pr(yi,t = c, yi,t−2 = d | pi, yi,t−3, xi = x, λi).

Hence,

Pr(yi,t = d, yi,t−2 = c | pi, yi,t−3, xi = x, λi)

Pr(yi,t = c, yi,t−2 = d | pi, yi,t−3, xi = x, λi)

=
e−γ0(pd,i,t+pc,i,t−2)β(x)e−δ01{c6=yi,t−3}β(x)Mt−1(d, λi)

e−γ0(pc,i,t+pd,i,t−2)β(x)e−δ01{d6=yi,t−3}β(x)Mt−1(c, λi)

= exp
[
−γ0

(
∆∆pd,ci,t,t−2

)
β(x)

]
exp [−δ0 (1{yi,t−3 6= c} − 1{yi,t−3 6= d}) β(x)]

·Mt−1(d, λi)

Mt−1(c, λi)

As in the s = t−1 case, the result for s = t−2 now follows by application of Lemma C.1(a)
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and integrating out λi.

(iii) s < t− 2.

Pr(yi,t = d, yi,s = c | pi, yi,s−1, xi = x, λi)

=
∑

r∈Dt−1,r′∈Ds+1
[Pr(yi,t = d | pi, yi,t−1 = r, xi = x, λi)

·Pr(yi,t−1 = r | pi, yi,s+1 = r′, xi = x, λi)

·Pr(yi,s+1 = r′ | pi, yi,s = c, xi = x, λi)

·Pr(yi,s = c | pi, yi,s−1, xi = x, λi)]

=

[∑
r∈Dt−1,r′∈Ds+1

e−δ0(1{r 6=d}+1{c6=r′})β(x)e
−γ0pr′,i,s+1β(x)+λr′,i

Mt(r,λi)

·Pr(yi,t−1 = r | pi, yi,s+1 = r′, xi = x, λi)

]
· e
−γ0pd,i,tβ(x)e(−γ0pc,i,s−δ01{yi,s−1 6=c})β(x)eλd,i+λc,i

Ms+1(c,λi)Ms(yi,s−1,λi)

Similarly, for Pr(yi,t = c, yi,s = d | pi, yi,s−1, xi = x, λi).

Using the notation from Lemma C.1(b),

Pr(yi,t = d, yi,s = c | pi, yi,s−1, xi = x, λi)

Pr(yi,t = c, yi,s = d | pi, yi,s−1, xi = x, λi)

=
e−γ0(pd,i,t+pc,i,s)β(x)e−κ01{c 6=yi,s−1}Ms+1(d, λi)St,s(d, c, λi)
e−γ0(pc,i,t+pd,i,s)β(x)e−κ01{d6=yi,s−1}Ms+1(c, λi)St,s(c, d, λi)

= exp
[
−γ0

(
∆∆pd,ct,s

)
β(x)

]
exp [−δ0 (1{yi,s−1 6= c} − 1{yi,s−1 6= d}) β(x)]

·Ms+1(d, λi)St,s(d, c, λi)
Ms+1(c, λi)St,s(c, d, λi)

Now apply both parts of Lemma C.1 and integrate out λi. The result for s < t − 2

follows. �
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